
CSCC01 Week 5 Notes
1

SOLID:
- Single responsibility principle
- Open/closed principle
- Liskov substitution principle
- Interface segregation principle
- Dependency inversion principle

Single responsibility principle:
- A class should have only 1 reason to change.
- A class should have a single responsibility, where a responsibility is nothing but a reason

to change.
- Every class should have a single responsibility.
- Responsibility should be entirely encapsulated by the class.
- All class services should be aligned with that responsibility.
- This makes the class more robust and reusable.
- E.g. Consider the below piece of code:

Some problems with this are:

- The promotion logic is the responsibility of HR.
- When promotion policies change, the Employee class does not need to change.
- Similarly, tax computation is the finance department’s responsibility.
- If the Employee class owns the income tax calculation responsibility then

whenever the tax structure/calculations change then Employee class will need to
be changed.

- Lastly, the Employee class should have the single responsibility of maintaining
core attributes of an employee.

To fix it:
1. Let’s move the promotion determination logic from the Employee class to the

HRPromotions class, as shown below:

CSCC01 Week 5 Notes
2

2. Similarly, let's move the income tax calculation logic from Employee class to
FinITCalculations class, as shown below:

Our Employee class now remains with a single responsibility of maintaining core
employee attributes, as shown below:

Open/closed principle:

- A class should be open for extensibility but closed for modification.
- Software entities (classes, modules, functions, etc.) should be open for extension, but

closed for modification.
- We should add new features not by modifying the original class, but rather by extending

it and adding new behaviours.
- The derived class may or may not have the same interface as the original class.
- A module will be said to be open if it is still available for extension. For example, it

should be possible to add new fields or new methods.
I.e. If attributes or behavior can be added to a class it can be said to be open.

- A module will be said to be closed if it is available for use by other modules. This
assumes that the module has been given a well-defined, stable description.
I.e. If a class is re-usable or specifically available for extending as a base class then it is
closed.

- A class adheres to the Open/Closed Principle when it is closed, since it may be
compiled, stored in a library, baselined, and used by client classes, but it is also open,
since any new class may use it as a parent, adding new features.
I.e. A class can be open and closed at the same time.

- The general idea of this principle is to tell you to write your code so that you will be able
to add new functionality without changing the existing code. That prevents situations in
which a change to one of your classes also requires you to adapt all depending classes.

CSCC01 Week 5 Notes
3

- E.g.
Let's say we need to calculate areas of various shapes. Say our first shape is Rectangle.

Next we create a class to calculate the area of this Rectangle which has a method
calculateRectangleArea().

Let’s create a new class Circle with a single attribute radius.

Then we modify the AreaCalculator class.

As the types of shapes grow this becomes messier as AreaCalculator keeps on
changing and any consumers of this class will have to keep on updating their libraries
which contain AreaCalculator.

CSCC01 Week 5 Notes
4

As a result, AreaCalculator class will not be baselined(finalized) with surety as every
time a new shape comes it will be modified.
So, this design is not closed for modification.
Also, note that this design is not extensible.
As we add more shapes, AreaCalculator will need to keep on adding their computation
logic in newer methods.
We are not really expanding the scope of shapes; rather we are simply doing
piece-meal(bit-by-bit) solution for every shape that is added.

Instead, we should do this:
For this we need to first define a base type Shape.

Next, have Circle & Rectangle implement the Shape interface.

Now, the AreaCalculator class looks like this.

This AreaCalculator class now fully removes our design flaws noted above and gives a
clean solution which adheres to the Open-Closed Principle.

Liskov substitution principle:
- If S is a subtype of T, then objects of type S may be substituted for objects of type T,

without altering any of the desired properties of the program.
Note: “S is a subtype of T” means S is a child class of T, or S implements interface T in
Java.
I.e. The Liskov substitution principle is saying “If C is a child class of P, then we should
be able to substitute C for P in our code without breaking it.”

CSCC01 Week 5 Notes
5

- E.g. Consider a square and a rectangle. In math, a square is a rectangle. The "is a"
makes you want to model this with inheritance. However if in code you made Square
derive from Rectangle, then a Square should be usable anywhere you expect a
Rectangle. This makes for some strange behavior. Imagine you had SetWidth and
SetHeight methods on your Rectangle base class. If your Rectangle reference pointed to
a Square, then SetWidth and SetHeight doesn't make sense because setting one would
change the other to match it. In this case Square fails the Liskov Substitution Test with
Rectangle and the abstraction of having Square inherit from Rectangle is a bad one.
Hence, in OO programming and design, unlike in math, it is not the case that a Square is
a Rectangle. This is because a Rectangle has more behaviours than a Square, not less.

- The LSP is related to the Open/Close principle. The sub classes should only extend (add
behaviours), not modify or remove them.

- The LSP is applicable when there’s a supertype-subtype inheritance relationship by
either extending a class or implementing an interface. We can think of the methods
defined in the supertype as defining a contract. Every subtype is expected to stick to this
contract. If a subclass does not adhere to the superclass’s contract, it’s violating the
LSP.

- This makes sense intuitively. A class’s contract tells its clients what to expect. If a
subclass extends or overrides the behavior of the superclass in unintended ways, it
would break the clients.

- Some ways a method in a subclass can break a superclass method’s contract are:
1. Returning an object that’s incompatible with the object returned by the superclass

method.
2. Throwing a new exception that’s not thrown by the superclass method.
3. Changing the semantics or introducing side effects that are not part of the

superclass’s contract.
Interface segregation principle:

- Clients should not be forced to depend on methods they do not use. Declaring methods
in an interface that the client doesn’t need pollutes the interface and leads to a “bulky” or
“fat” interface.

- It is better to have lots of small, specific interfaces than fewer larger ones. This way, it
will be easier to extend and modify the design.

- Similar to the Single Responsibility Principle, the goal of the Interface Segregation
Principle is to reduce the side effects and frequency of required changes by splitting the
software into multiple, independent parts.

- E.g. We’ll create some code for a burger place where a customer can order a burger,
fries or a combo of both.

Since a customer can order fries, or a burger, or both, we decided to put all order
methods in a single interface.
Now, to implement a burger-only order, we are forced to throw an exception in the
orderFries() method and the orderCombo() method.

CSCC01 Week 5 Notes
6

Similarly, for a fries-only order, we’d also need to throw an exception in orderBurger()
method and the orderCombo() method.
And this is not the only downside of this design. The BurgerOrderService and
FriesOrderService classes will also have unwanted side effects whenever we make
changes to our abstraction. Let’s say we decided to accept an order of fries in units such
as pounds or grams. In that case, we most likely have to add a unit parameter in
orderFries(). This change will also affect BurgerOrderService even though it’s not
implementing this method.

- By violating the ISP, we face the following problems in our code:
- Client developers are confused by the methods they don’t need.
- Maintenance becomes harder because of side effects. A change in an interface

forces us to change classes that don’t implement the interface.
Dependency inversion principle:

- The dependency inversion principle states the following:
1. Depend upon abstractions. Do not depend upon concretions.
2. Abstractions should not depend upon details. Details should depend upon

abstractions.
3. High-level modules should not depend on low-level modules. Both should

depend on abstractions.
- The general idea of this principle is that high-level modules, which provide complex logic,

should be easily reusable and unaffected by changes in low-level modules, which
provide utility features. To achieve that, you need to introduce an abstraction that
decouples the high-level and low-level modules from each other.

CSCC01 Week 5 Notes
7

- In procedural systems, higher level modules depend on lower level modules to fulfil their
responsibilities. The diagram below shows the procedural dependency structure.

The Dependency Inversion Principle, however, advocates that the dependency structure
should rather be inverted when designing object-oriented systems.

- If you take a relook at the diagram above showing modular dependencies in a

procedural system, then one can clearly see the tight coupling that each module layer
has with its sub-layer. Thus, any change in the sub-layer will have a ripple effect in the
next higher layer and may propagate even further upwards. This tight coupling makes it
extremely difficult and costly to maintain and extend the functionality of the layers.

- The Dependency Inversion Principle, does away with this tight-coupling between layers
by introducing a layer of abstraction between them. So, the higher-level layers, rather
than depending directly on the lower-level layers, instead depend on a common
abstraction. The lower-level layer can then vary(be modified or extended) without the
fear of disturbing higher-level layers depending on it, as long as it obeys the contract of
the abstract interface. If, as shown in the object-oriented design diagram above, the
lower layers literally extend the abstraction layer interfaces, then they will follow the
contract.

